欢迎访问名词吧!

当前位置

首页 > 人物 > 数学家 > 卡当名词解释

卡当

卡当(1501—1576)意大利数学家、医生,并在医学、哲学、物理学和星占学中都有一定成就。1545年著《大术》首先介绍了从塔尔塔利亚那里得来的三次方程的解法,他和学生费拉里发现的四次方程的解法。
卡当1501年9月24日生于意大利帕维亚。他的童年相当不幸,这就造成了他个性孤僻,自负,并且往往在言谈中,表现得冷漠无情。他为了逃避穷困、病痛、毁谤和不公平的待遇,曾在25年之中,每天玩骰子,并天天玩棋达40年之久。
青年时代,他致力于研究数学、物理。从帕维亚大学医学院毕业后,在波隆纳和米兰行医并教授他人医术,成为全欧有名的医生。这期间,他也受聘在意大利的多所大学,担任数学讲座教师。
卡当的坎坷经历使他的性格颇为奇特,因而常常被描述为科学史上的怪人。他在数学、哲学、物理学和医学中都有一定成就,同时也一直醉心于占星术和赌博的研究。卡当被誉为百科全书式的学者,他的著作涵盖了数学、天文学、占星学、物理学、医学以及关于道德方面的语录。一生共写了各种类型的文章、书籍200多种.现存的材料就有约7000页。
他智力超群,但性情孤僻,职业动荡多变,著述鱼龙混杂。除了作为正式职业的著名医生、医学教授、占星术士外,就他的贡献而言,人们也常把他称为数学家、哲学家、物理学家,或者笼统地称之为科学家。
卡当的数学贡献表现在他对算术和代数的研究,1539年首次出版了他的两本算术演讲书,其中较重要的一部是《算术实践与个体测量》。书中他主要用数值计算来解决实际问题,在一些计算方法、代数变换中显示出较高技巧。当时的代数没有符号,仅靠文字叙述来表示解题过程,称为“文词代数”。对于高于二次的代数方程,一般是没有解决办法的。卡当在书中列专题论述了多种方程的解法,甚至求得一些特殊三次方程的解。例如名词解释:方程6x3- 4x2 = 34x + 24,方程两边同时加上6x3 + 20x2,合并后得名词解释: 4x2(3x+4) = (2x2+4x+6)(3x+4),两边同除以3x+4,则由二次方程解得原方程的一个正根x=3。按当时的习惯,一般不承认方程有负根,解出一个正根就认为是解完了方程。
卡当最重要的数学著作是1545年出版的《大术》。该书系统给出代数学中的许多新概念和新方法。例如名词解释:三、四次代数方程的一般解法;书中首次出现使用符号的雏形。他对三次及四次方程式提出了系统性的解法,这是一个非常重要的成就。他确认高于一次的代数方程多于一个根;已知方程的一个根将原方程降阶;方程的根与系数间的某些关系;利用反复实施代换的方法求得数值方程的近似解;解方程中虚根的使用等等。