欢迎访问名词吧!

当前位置

首页 > 科学 > 自然科学 > 数学 > 米赫林乘子定理﹡名词解释

米赫林乘子定理﹡

米赫林乘子定理名词解释:给出函数成为Lp(p1)乘子的充分条件的定理.米赫林乘子定理可叙述如下名词解释:设m(x)在Rn上除原点外是k阶连续可微的,其中k为大于n/2的整数.又假设m(x)的所有不超过k阶的偏导数满足条件其中α=(α12,…,αn),αj是非负整数,|α|=α1 α2 … αn≤k,则m(x)是Lp(p1)乘子.